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Abstract

The grid generator amatos has been developped for adaptive modelling of ocean
and atmosphere circulation. It features adaptive control of planar, spherical, and
volume grids with triangular or tetrahedral elements refined by bisection. The user
interface GRID API, a Fortran 90 module, shields the application programmer from
the technical aspects of mesh adaption like amatos’ hierarchical data structure, the
OpenMP parallelization, and the effective calculation of a domain decomposition
by a space filling curve (SFC) approach.

This article presents the structure of amatos, the user interface GRID API, the
powerfull SFC ordering and decomposition of data, and two applications of amatos,
namely the modelling of tracer advection in the polar vortex and the development of
the adaptive finite element atmosphere model PLASMA (parallel large scale model
of the atmosphere).
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1 Introduction

The grid generator amatos (Behrens, 1996, 2003) was developped to make
adaptive mesh generation available for dynamic time dependent flow problems
as arising in climate simulations.

The philosophy of amatos is to hide away all nontrivial tasks concerning mesh
generation and adaption from the application programmer. The complete mesh
generation process can be controlled by approx. 20 Fortran 90 subroutines
of the application programming interface (GRID API), which also provides
additional variables, data structures and constants.

The generic field of application for amatos is atmosphere and ocean circula-
tion modelling with semi-Lagrangian advection schemes. The time stepping
scheme, however, is not part of amatos. The semi-Lagrangian background is
merely reflected by the choice of service routines (e.g., interpolation) imple-
mented in the GRID API, which may be extended for further needs. At the
time being, amatos provides

a F90-interface based on modular software techniques,

e mesh adaptation (i.e., refinement and coarsening corresponding to a given
error criterion) of planar, spherical, or volume grids with triangular or tetra-
hedral elements,

e adaptivity by hierarchical data structures (refinement by bisection method),

e support of arbitrary finite element (FEM) basis functions (to be defined by
the user, linear and quadratic functions are preinstalled),

e fast mesh partitioning by a space filling curve (SFC) approach (for paral-
lelization by domain decomposition and as cache efficient ordering for local
calculations),

e service routines e.g., for interpolation,

e shared memory parallelisation with OpenMP (under construction).
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Using amatos

2.1 Setup

2.1.1 Compiling

Before compiling the library, the user has to choose between the planar, spher-
ical, or volume version of amatos. OpenMP parallelization is toggled by the
corresponding compiler directives. amatos has been succesfully executed on



different hardware and operating systems, including SGI Origin, SUN Fire,
IBM Regatta, Linux with Intel’s Fortran90 compiler ifc, and comes with cor-
responding Makefiles.

2.1.2  Declaring Finite Element Types

If a required finite element type is not yet predefined, a signature data struc-
ture describing this type has to be added in the amatos source code. At the
time being, amatos includes the definition of linear (unknowns defined at
vertices) and quadratic (unknowns defined at vertices and edges) Lagrange
elements. Table 1 shows the components of the Fortran 90 data structure
fem_signatur and values for some finite element types.

Table 1

Components of the data structure fem_signatur and examples for commonly used
finite element types.

element type linear | lin. non- | quadr. cubic
Lagr. | conform. | Lagr. Lagrange
i_order: order 1 1 2 3
i_unknowns: total #variables 3 3 6 10
i npoints: ##var. per vertex 1 0 1 1
i_gpoints:  #var. per edge 0 1 1 2
i_epoints:  Fvar. per element 0 0 0 1
r_gweights: var. pos. on edge - (3.3) 3.3 | G. 2.3
r_eweights: var. pos. on elem. - - - (%, %, %)

Once the library has been compiled and an application uses amatos, each
variable in the application has to be registered with its finite element type in
the initilization phase before any mesh items are created. Now, the appropriate
memory will be allocated for each unknown position corresponding to that
finite element type.

2.1.3 Initial Mesh

The user has to provide an initial coarse mesh of the computational domain
in a special input file. The triangular or tetrahedral mesh must resolve the
computational domain and should be as coarse as possible. Two examples for
an initial triangulation and resulting refined grids for regular geometries are
shown in fig. 1 and 2, more complex examples are subject of section 4.3, see
fig. 11.



Fig. 1. Initial triangulation (icosahedron) and uniform refinement of a spherical grid.

Fig. 2. Initial triangulation and subsequent uniform and adaptive refinement of a
square grid.

The file is constructed with keywords preceding the corresponding values. It
contains the vertex coordinates and the mesh topology with information on
boundary edges. To enhance the performance of some calculations, the vertices
of a (triangular) element should be given in counterclockwise order. If this is
not the case, amatos issues a warning and reorders the vertices.

For each element, one edge has to be marked for the first refinement step. One
full refinement step (one bisection performed on all elements) needs not to
result in a conforming mesh, because amatos checks for hanging vertices and
refines the neighbouring elements until the mesh is conforming.

The list of keywords and the data types in amatos can be extended to handle
further properties of the mesh. E.g., in oceanographic applications one could
distinguish between different coastlines or open boundaries by tagging the
boundary edges or vertices.

2.2 The User Interface GRID API

The application programming interface GRID API provides routines, data,
and parameters to the programmer of a model code, but hides the underlying
complicated data structures and methods of grid adaption in amatos as illus-
trated in fig. 3. The routines in the GRID API can be classified according to
two characteristics.

(1) Think of the adaptive algorithm as a two phase procedure: First, the
mesh is generated/adapted and each mesh item keeps associated data. In
the second phase, all required data is gathered from the mesh items into
vectors and numerical calculations are performed on vectors (the consec-
utive data storage allows for efficient pipelined or vectorized execution).
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Fig. 3. The grid application programming interface

Finally, the results are scattered back to mesh item storage positions.

(2) Think of the program as a data flow with methods acting on and ma-
nipulating the data. A data structure called grid_handle represents a
specific instance of the mesh. Methods act on the instance, manipulating
it.

The F90 structure grid handle contains parameters describing an instance
of the mesh. A grid handle for each time level that has to be held during
a model run (DEF_timesteps time levels, typically two or three) is provided
by the GRID API as a public variable p_grid of type grid_handle and di-
mension DEF_timesteps. For the application programmer, the most important
components of grid handle are the following integers

e i timetag: value for current time tag,

e i_enumfine, i_gnumfine: number of elements or edges on the computational
grid (in contrast to i_enumber, i_gnumber, i.e., total number of elements or
edges on all refinement levels in the hierarchical structure),

e i nnumber: number of vertices on the computational grid (for vertices,
i nnumfine would be equal to i_nnumber),

e i_unknowns of dimension i_femtypes: for each finite element type, the total
number of unknowns on the computational grid.

With the grid_handle, the user can allocate the appropriate memory for data
vectors, gather or scatter the desired mesh data via the GRID API, and toggle
the mesh generation. Here, we can only give a very rough overview of the most
important routines. For a complete description of the GRID API, we refer to
amatos’ user manual (Behrens, 2003).



Mesh creation and termination
grid_initialize initializes amatos,
grid_registerfemvar registers variables to a desired finite element type,
grid_createinital reads the triangulation file (see section 2.1.3) and re-
fines uniformly to the coarsest user—given level,
grid writesaveset, grid readsaveset write and read restart files
grid_terminate frees the memory.

Data retrieval
grid_getinfo gathers information from grid items into consecutive arrays,
grid getiteminfo gathers information from an individual mesh item,
grid_putinfo scatters information from data arrays into the mesh items.

Numerical calculation
grid_coordvalue interpolates a variable at a given coordinate (bi-linear,
bi—cubic spline, thin plate spline,
grid_coordgradient, grid nodegradient estimates the gradient of a vari-
able at a given coordinate, or at a given vertex, respectively,
grid_integral integrates a variable over the domain,
grid_nodearea calculates the area of influence for grid vertices,
grid_polygridintersect calculates the intersection of a given polygon
with the mesh, i.e., determines the intersected elements and intersection
area,
grid_boundintersect calculates the intersection of a line with the bound-
ary.

Mesh control
grid_adapt adapts the grid according to the elements’ markers set by
grid_putinfo,
grid_timeduplicate duplicates the grid, typically for a new timestep,
grid_domaincheck checks if a given coordinate belongs to the mesh,
grid_createdual creates the dual mesh.

3 Grid Partitioning with a Space-Filling Curve Approach

The grid partitioning is a crucial part of the adaptive mesh generator. Sophis-
ticated algorithms as e.g. provided by METIS (Karypis and Kumar, 1998)
are not feasible for adaptive time stepping codes where the partitioning has
to be recalculated over and over again. For amatos, Behrens and Zimmer-
mann (2000) employ a space filling curve approach (SFC) that is implemented
straight forward for a hierarchical triangular adaptive grid. This partitioning
is very fast, guarantees optimal load balancing by construction and results
in rather short (though not optimal) interface length. For the quality of SFC
induced partitions see Zumbusch (2001). Furthermore, due to the fractal na-
ture of the SFC the resulting ordering retains data locality on any level of



Fig. 4. Construction of the space filling curve (SFC) through the elements for a)
uniform planar, b) unregularly refined, and c¢) uniform tetrahdral grids.
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Fig. 5. SFC through the elements and a mesh partitioning into 14 subdomains

memory hierarchy from cache levels to main memory, making a further local
renumbering on subdomains obsolete.

3.1 SFC algorithm

The global SFC index of an element is calculated at the time of the elements’
construction by bisection of the parent triangle. As depicted in fig. 4, a) and
b), the algorithm is straight forward when regarding the indices as binary
numbers starting with zero. The first bisection on the coarsest level divides
the parent element into a child triangle on the left hand side of the bisecting
edge receiving the leading bit 0, and a child triangle on the right with entry 1
as the first bit. The second bisection yields the second bit of the binary index,
but the role of the left and right hand side is interchanged (second bit 1 on
the left, second bit 0 on the right). Stepping down all levels of refinement and
adding the corresponding bits according to the relative position in the bisected
parent triangle gives the index in the SFC. For an unstructured grid, gaps in
the numbering have to be removed after finishing this procedure.



Fig. 6. Sparsity pattern of the stiffness matrix for an adaptively refined grid with
original numbering (nodes in the order of creation) and rSFC numbering of nodes.

The SFC algorithm can easily be extended to tetrahedral grids with refinement
by bisection (fig. 4, ¢)). Figure 5 shows an adaptive grid on the sphere with an
SFC through the elements and a zoom into the refined region. The partitioning
is obtained by simply cutting the SFC into equal chunks.

In most applications, node wise calculations play a more important role than
loops through the elements. More generally, one is ultimately interested in
ordering the unknowns. Taking this into account, amatos sets up an ordering
of all unknowns located at vertices, edges, and/or elements (depending on the
order of the FE basis function) by collecting and counting them on the way
along the elements’ SFC. For matrix ordering, the reverse of this numbering
schould be taken to obtain a local arrow head down shape in the sparsity
pattern. When the user retrieves data arrays from the GRID API, all arrays
are sorted along this reverse SFC, abbreviated as rSFC.

The impact of the rSFC numbering of unknowns on the sparsity pattern of
a typical stiffness matrix for linear FE can be studied in fig. 6 where most
entries are gathered close to the diagonal. More complex matrices for coupled
linear equations with several variables and mixed FE (e.g., in the context of
the atmosphere model PLASMA, see section 4.2) can be set up according to
the SFC numbering, too, which results in a very similar sparsity pattern.

In the context of ILU (incomplete LU-factorization) preconditioning, the rSFC
ordering proves to be a powerfull candidate among other well known fill-in
reducing orderings like RCM (reverse Cuthill-McKee) and minimum degree.
An example for a coupled linear equation in PLASMA with approx. 200000
unknowns is given in table 2. We employ he FoSSI solver interface (Frickenhaus
et al., 2003) and choose the PETSc solver library (Balay et al., 2003) with
BiCGstab and level ILU(1) as preconditioner to reduce the residuum by a



Table 2

Comparision of the influence of matrix orderings on the iteration count and com-
putation time for ILU(1)—preconditioned BiCGstab on one processor of a SunFire
15k: natural amatos numbering (original), reverse Cuthill-McKee (RCM), quotient
minimum degree (QMD), reverse space filling curve (rSFC).

ordering original RCM QMD rSFC

# iterations 66 22 20 12
solution time 355.0s 94,5s 92,7s 779s

factor of 10713, Original and rSFC ordering are provided by the calling routine,
while RCM and minimum degree ordering are calculated by the PETSc solver.

4 Examples
4.1 Advection Model for Tracer Transport

First experiments with adaptivity in atmospheric modelling (Behrens et al.,
2000) allowed to model tracer advection in the polar vortex with high resolu-
tion on a workstation computer. Snapshots of the adaptive grid are depicted
in fig. 7.
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Fig. 7. Snapshots from an adaptive model (5 km minimal resolution) for the advec-
tion of tracer in a simulated wind field of the polar vortex.

/.2 PLASMA

In order to achieve reliable assessments of future climate development and
the impact of anthropogenic influence an improved understanding of natu-
ral climate variability on time-scales from seasons to decades is required. For
this, nonlinear interactions between processes at different spatial and temporal
scales play a fundamental role. The realistic representation of these multi-scale



interactions is important not only for climate modelling but also for numeri-
cal weather prediction. To study them, the application of adaptive modelling
techniques in atmospheric flow appears natural. Therefore, we applied these
techniques by using the grid generator amatos for the development of the at-
mospheric model PLASMA (Parallel LArge-scale Self-adaptive Model of the
Atmosphere).

As a first step, a barotropic version of the model has been implemented, based
on the shallow-water equations (SWE). The shallow water equations describe
many of the physical phenomena that are represented in the full set of primi-
tive equations and commonly serve as a test case for new numerical methods,
because they present the major difficulties found in the horizontal discretiza-
tion of three-dimensional equations.

The SWE describe the horizontal flow within a thin atmospheric layer of
an hydrostatic gas with constant density. In the current implementation of
PLASMA we use a scalar formulation of the SWE. This formulation has been
derived from the vector formulation of the SWE on the sphere SC R3, as given
in Coté (1988) by applying rots and divg to the momentum equation. By
defining vorticity ¢ := rotgu, divergence ¢ := divgu, and the static underlying
orography @, : S — R, combining with the Helmholtz decomposition for time
T, we obtain the following scalar formulation of the SWE

0 +u-Vs(+(¢o+ fo=—u-Vgf,
8t(5+u-V55+A5<I>—fC:—(n><u)-st—J(u),

3t<I>+u-Vsq)+<D5—<I>05:u-V5<I>O, (1)
—AS¢:C7
ASX:(Sa

rotsy + Vgx=u

The function u : Sx (0,7) — R? with u-n = 0 denotes the horizontal velocity
field and @ : S x (0,7) — R the geopotential height. The spherical differential
operators Vg, Ag, rot,, div,, rotg on S have been defined according to Dziuk
(1988). The functions ¥, x : S x (0,7) — R are the streamfunction and the
velocity potential respectively and the functional J is defined as

3 o
J(u) := Zi,j,k,l:l(vsui)k 0i1 0,k (Vsu;); + u; uj divdiv(0;n; n).

For the numerical implementation of these spherical SWE the Lagrange-Galer-
kin method, a combination of two discretization methods, has been applied.
The first is the semi-Lagrangian method, the discretization of the material
derivative along trajectories, which has good stability properties (Siili, 1988).
The second is the finite element method on the sphere (Dziuk, 1988) realized on
an approximating polyhedron S, consisting of a triangular grid whose nodes
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Fig. 8. Validation of PLASMA. Inclination angle o and initial condition for velocity

field u for the analytical solution (solid body rotation with o = %)

lie on S. A detailed description of the numerical methods can be found in
Lauter (2003).

Using amatos

For a first validation of the model an analytical solution is convenient, because
the numerical error can be computed exactly. Here we consider two experi-

ments, the solid body rotations with different rotation axes (a = 0, a = 7).

The initial conditions depending on the angle a, the inclination of the flows
rotation axis to the earth’s axis, see Fig. 8, are given by

u(r)=cala) xz & ((z) = c2ala)-z, o(x) =0, VrelS

O (x) :—% [(ca(a) cx)*+2cala)-x Q- x} +C, Vzes
where
ci= EO’ a(a) := (—sin(a), 0, cos(a))?*.

up = 307 is the maximal velocity, R the earth radius and C'" an arbitrary
constant. With the underlying orography

¢ e

Polx) = =5 2

we obtain a time periodic quasistationary flow.

Fig. 9 illustrates the relative L?(S}) discretization error and shows, that the
error decreases for increasing spatial and time resolution. Thus we have shown
for these two experiments the experimental convergence of the numerical
method.
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Fig. 9. Simulation with PLASMA. Relative discretization error L?(S},) for the geopo-
tential ¢

We have obtained first insights into the capability of the model to cope with
more realistic atmospheric flow situations by studying the development of
quasi-stationary planetary Rossby-waves, forced by orography. Here, we in-
tended to reproduce quasi-stationary Rossby-waves by forcing a tropospheric
westerly current with one localized mountain. The mountain of 480m height
is situated at 30°N, 0°W. The westerly current has its maximum of 30m/s at
30°N with a meridional extension of 30°.

In Fig. 10, upper row, the orography and the initial geopotential height field
for this test case is shown. Geopotential height fields after 20 day simulation
time are displayed in the lower row of Fig. 10 for the simulation with a fixed
grid and for the simulation with adaptive grid refinement. The grid refinement
criteria is determined for every time step by the gradients of the vorticity and
divergence.

Both simulations show the development of long Rossby waves forced by the
isolated mountain. Due to the rather low height of the mountain, pronounced
perturbations on smaller scales do not occur and the differences between the
simulations with fixed and adaptive grids are rather small, but non-negligible.

These results encourage us to further investigate how the development and the
variability of the quasi-stationary waves are influenced by the height of orog-
raphy and especially by the two-way feedbacks between global and regional
scales obtained with the adaptive mesh-refinement.

Here we demonstrated the successful application of the adaptive mesh genera-
tor amatos for the development and implementation of the global atmospheric
model PLASMA which therefore allows an adequate representation of two-way
feedbacks between global and regional scales. Applying new numerical meth-
ods and parallelisation techniques ensure efficient integrations of PLASMA on
state-of-the-art high performance computing architectures. We have demon-
trated the numerical convergence of the model and its capability to simulate
the most important feature of the extratropical large scale circulation, the

12
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Fig. 10. Simulation of Rossby-waves with PLASMA. Upper row: Orography (left)
and initial geopotential height field (right). Lower row: Geopotential height fields
after 20 days for fixed mesh, mesh width ~ 750km (left) and for adaptive mesh,
mesh widths between 400 and 1700km (right).

quasi-stationary Rossby waves. In future, special emphasis will be put on the
influence of the representation of two-way feedbacks on the variability of the
quasi-stationary waves and therefore on climate variabilty on time-scales from
seasons to decades.

4.3 amatos in Oceanography

From the grid generation point of view, the difference between atmospheric
and oceanographic modelling is the highly irregular geometry of ocean basins.

amatos refines a given grid by bisecting the triangles without correcting el-
ements at the boundary with respect to a given coastline, i.e., if a curved
coastline is approximated by one element edge on the coarsest grid level, the
new vertices on finer grid levels will all lie on this chord and will not be moved
to the curved coast. It is planned to extend amatos for smooth geometries,
such that new vertices at the boundary can be moved to a given coastline,

13



Fig. 11. Examples for initial grids that resolve the boundary

but a more general approach for arbitrary coastlines is not feasible. A remedy
is to provide amatos with an initial grid that already resolves the coastline
(and bottom topography in the 3D case) with the finest desired resolution as
shown in the examples in fig. 11. This approach also avoids the question of
how to deal with the computational domain changing during a model run.

5 Outlook

An ongoing project is the concise validation and code optimization of amatos
version 2.0. The support of arbitrary finite element types introduced more
data nodes which in turn made considerable extensions of the SFC support
and the routines for data retrieval necessary.

The further plans reflect the needs of applications carried out with amatos. In
the range of the PLASMA project, error estimators based on mathematical
and physical criteria are developped.

A major concern are sparse linear solvers. As amatos is parallelized with
OpenMP while state of the art parallel sparse solver packages are based
on MPI, we had to find a way to establish efficient communication between
OpenMP-threads and MPI-tasks (Rakowsky et al., 2003). However, a pure
OpenMP library of sparse solvers remains desirable and we have started to im-
plement the most promising domain decomposition solvers in OpenMP (Frick-
enhaus et al., 2003). Another promising approach is to make use of amatos’
hierarchical data structure in a multigrid solver, e.g., a cascading mutligrid
solver (Bornemann and Krause, 1998).
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